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Abstract
A simple model of self-pulsation in lasers is considered. The laser is described
by the system of two ordinary differential equations for the number of photons
in the cavity and the number of excitations in the active medium, leading to the
equation for the oscillator Toda with damping. For the case of strong spiking,
the damping is considered as perturbation; the estimates in terms of elementary
functions are suggested for the period of pulsation, damping rate, amplitude
and phase of pulsation, quasi-energy and the output power. These estimates
are compared to the numerical solution and to the experimental data.

PACS numbers: 42.60.Rn, 02.30.Hq, 02.30.Mv

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Self-pulsation takes place at the beginning of laser action in various optical generators. As the
pump is switched on, the gain in the active medium rises and exceeds the steady-state value.
Then the number of photons in the cavity increases, depleting the gain below the steady-state
value, and so on. The laser pulsates; the output power at the peaks can be orders of magnitude
larger than that between pulses. After several strong peaks, the amplitude of pulsation reduces,
and the system behaves as a linear oscillator with damping. Then the pulsation decays; this
is the beginning of the continuous-wave operation [1–3]. The self-pulsation is a transient
phenomenon in the continuous-wave lasers.

This paper was motivated by questions about applicability of analytical estimates of the
efficiency of the laser action in various models [4, 5]. The condition of pumping above the
threshold and the sufficient cooling may require the quasi-continuous operation. With pulsed
pump, the transient regime takes place at the beginning of each pulse.
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The pulsation in lasers has been under intensive study [6–29]. Usually, the analysis of
pulsation is limited by the cases of a weak pulsation and/or the numerical solution of the
differential equations, but the analytical properties of the solution can be revealed, treating the
equations as oscillator Toda [3, 28, 29] in the first-order averaging for the slow damping. Such
a description makes it easier to understand the phenomenon. However, the use of these results
implies the numerical solution of the differential equation for the quasi-energy of the oscillator
Toda, while the right-hand side of this equation is expressed in terms of an integral. Therefore,
numerically, such an ‘analytic solution’ does not run faster than a direct implementation of the
second-order differential equation for the same oscillator.

The detailed description of any phenomenon should be followed by the easy-to-use
portable algorithm which allows us to estimate physical quantities without repeating the
calculus which is already done. In this paper, we suggest approximations for the main
parameters of self-pulsation. Our goal is to describe the pulsation through simple functions,
satisfying criteria 1–3 below:

(1) Smallness of damping (necessary condition for the strong spiking) should be the only
restriction for the validity of the approximation; other parameters may vary many orders
of magnitude, covering all the physical range. (In particular, the approximation should
reproduce the properties of the solution at very weak and at very strong pulsing.)

(2) The approximations should be expressed in terms of elementary functions; all the range
of parameters should be covered with the same closed-form expressions. (For example, a
step-function should not be used for the representation.)

(3) The error of the approximations for the model should be small compared to the deviation
of the model from the experimental data.

In this paper, the evolution of the number of photons in the cavity and number of excitations
is described by a system of two differential equations [1] (section 2). This system leads to the
equation for the logarithm of the number of photons (section 3), which can be interpreted as
oscillator Toda [3]. It is a nonlinear classical oscillator with a fixed (parameter independent)
potential, and the damping term depends on two parameters.

The case without damping is considered in section 4. The period of pulsation
is approximated through elementary functions with seven significant figures. The
approximations are suggested for the number of photons as a function of time; the last
one provides at least three correct significant figures.

The damping is considered as perturbation. In the first order averaging, the two parameters
of damping are equivalent [3], and the scaling of the time variable allows us to describe the
amplitude (section 5) and phase (section 6) of pulsation with fixed (parameter-independent)
functions of single variable. These functions are approximated with three significant figures.

As an additional check and illustration, the resulting approximation for the output power
versus time is compared with the numerical solution (section 7) and to the experimental
realization (section 8) of the oscillator Toda.

2. Model and notations

In the simple model [1, 2] of self-pulsation, the evolution of the number X of photons in the
cavity and number Y of the excitation of the active medium is described with the differential
equations

dX/dt = KXY − UX, (1)

dY/dt = −KXY − V Y + W, (2)
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where

K = σ/(str), (3)

U = θ/L, (4)

V = 1/τ, (5)

W = Pp/(h̄ωp); (6)

tr is the round-trip time of light in the laser resonator, s is area of the pumped region (good
mode matching is assumed), σ is the emission cross-section at the signal frequency ωs, θ is
the transmission coefficient of the output coupler, τ is the lifetime of excitation of the active
medium and Pp is power of pump absorbed in the active medium.

Let ωp = 2πc/λp and ωs = 2πc/λs be frequencies of the pump and that of the lasing,
then λp and λs are the corresponding wavelengths; the output power

Pout = θh̄ωsX/tr. (7)

Both numbers X and Y are supposed to be large compared to unity; only in this case they can
be treated as classical (commutative and real) continuous variables. System of equations (1),
(2) is equivalent to the system (25.1), (25.2) in [1]. The steady-state solution

Xo = W

U
− V

K
, Yo = U

K
(8)

corresponds to the continuous-wave operation of the laser. It is pumped above threshold at
KW > UV . In the case of weak pulsation (|X−Xo| � Xo), the first term of the expansion of
the solution in vicinity of {Xo, Yo} gives the estimate [1, 2] of the decay rate � and frequency
� of pulsation:

� = KW/(2U), � =
√

w2 − �2, (9)

where

w = √
KW − UV . (10)

The pulsation is possible at w > �. At the low damping, �/w � 1, and the frequency � of
weak pulsation becomes w, but the repetition rate of strong pulses depends on the amplitude.

3. Dimensionless variables

The solution becomes simpler in new variables x, y, z instead of X, Y, t ; let

X = Xoe
x, (11)

Y = Yo + Xoy, (12)

t = z/w. (13)

Then, the system (1), (2) leads to the equation

d2x

dz2
+ D(x)

dx

dz
+ 	′(x) = 0, (14)

where

D(x) = uex + v, u = w/U, v = V/w, 	(x) = ex − x − 1, (15)
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Figure 1. Solution of equation (16) with γ = 5 and notations.

and prime denotes the derivative. Equation (14) can be interpreted as oscillator Toda [3], and
treated as any other classical oscillator [30–32]. The independent variable z is proportional to
time t by (27); variable x appears as a coordinate of this oscillator; then, 	(x) is the potential.
The dx/dz plays the role of the speed of this particle; and the term with first derivative in (14)
describes the speed-proportional friction; the coefficient of proportionality D(x) is increasing
function of coordinate x. The two functions D and 	 specify the nonlinearity of the oscillator.
Through D(x), this nonlinearity is determined by two parameters u and v. The shape of
potential 	 does not depend on any parameters; it is fixed function.

4. Case without damping

For the strong spiking, both parameters u and v should be small; then, during one cycle of
pulsation, the relaxation term can be treated as perturbation. Formally, we should also require
something like |dx/dz|u � 1, but, in the physical range of parameters, maximal value of
|dx/dz| remains of order of unity even at strong spiking. Therefore, practically, the condition
u + v � 1 is sufficient.

Let the ‘unperturbed’ equation correspond to the oscillator without damping:

d2x

dz2
+ 	′(x) = 0. (16)

This equation has periodic solutions: one of them is plotted in figure 1 to show the notations.
The energy of such oscillator can be expressed as follows:

E = 1

2

(
dx

dz

)2

+ 	(x). (17)

This dimensionless energy should not be confused with the energy of pulses

Epulse = θh̄ωs

to
Xo

∫ 2π/(wk)

0
exp(x(wt)) dt, (18)

and the optical frequency ωs (‘omega’) should not be confused with the frequency w

(‘lowercase double-u’) of small pulsations; so, below E is called ‘quasi-energy’, and the
normalized frequency of pulsations is denoted by k; at weak pulsation, k ≈ 1.

Neglecting the damping term leads to the conservation of quasi-energy, and the analytic
solution of (16) during one period can be written as

z = ±
∫ xmax

x

da√
2
√

E − 	(a)
, (19)

where

E = 	(xmax) = 	(xmin); (20)
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xmin and xmax are minimal and maximal values of x, which correspond to dx/dz = 0. Equation
(20), through the definition (15) of 	, leads to the relation between maximal and minimal
values of x,

E + 1 = exp(xmin) − xmin = exp(xmax) − xmax. (21)

Let Xmax = Xo exp(xmax) and Xmin = Xo exp(xmin) be maximum and minimum value of the
number of photons in the cavity. Define the amplitude of pulsation as Xmax/Xmin − 1. Define
the logamplitude

γ = 1
2 (xmax − xmin) = 1

2 ln(Xmax/Xmin) (22)

of pulsation and the median value

−δ = 1
2 (xmax + xmin). (23)

Then

xmax = −δ + γ , xmin = −δ − γ ; (24)

and (21) gives

δ = δ(γ ) = ln
sinh(γ )

γ
, (25)

E = E(γ ) = γ

tanh(γ )
+ ln

sinh γ

γ
− 1. (26)

Any of extremal values Xmin or Xmax, or xmin, or xmax, as well as quasi-energy E or
logamplitude γ could be used to characterize the strength of pulsation. It is better to use
logamplitude γ ; then xmin, xmin and E are expressed through elementary functions of γ . The
use of logamplitude γ as parameter simplifies the deduction.

The time interval between pulses can be estimated as

T (γ ) = 2π

wk(γ )
= 2π

k(γ )
√

WK − UV
, (27)

where the normalized frequency

k(γ ) = π
√

2

(∫ −δ+γ

−δ−γ

da√
e−δ−γ + δ + γ + a − ea

)−1

. (28)

The normalized period wT = 2π/k(γ ) is shown in figure 2. The expansion of normalized
period at small values of γ can be written as follows:

2π

k(γ )
= 1 −

∞∑
n=1

Tn(−γ 2)n; (29)
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Figure 2. Normalized period of pulsation (solid curve) versus logamplitude γ and two its
asymptotic (dashed).

the first coefficients of the expansion are

T1 = 1
24 ≈ 4.166 666 666 666 667 × 10−2

T2 = 13
6912 ≈ 1.880 787 037 037 037 × 10−3

T3 = 253
248 8320 ≈ 1.016 750 257 201 646 × 10−4

T4 = 613 39
33 443 020 800 ≈ 5.502 403 658 463 771 × 10−6

T5 = 723 077
802 632 499 200 ≈ 3.002 939 289 237 625 × 10−7

T6 = 14 228 449 243
800 963 023 601 664 000 ≈ 1.776 417 740 112 322 × 10−8

T7 = 62 148 265 493
11 900 022 064 939 008 000 ≈ 1.243 460 389 318 005 × 10−9

T8 = 199 627 352 068 763
5757 706 675 900 089 630 720 000 ≈ 1.040 139 920 140 456 × 10−10

T9 = 71 22 419 674 276 685 557
739 980 461 986 679 519 340 134 400 000 ≈ 9.625 145 581 755 775 × 10−12

T10 = 67 823 774 202 226 535 985 551
74 234 839 946 503 689 380 202 283 008 000 000 ≈ 9.136 380 471 905 483 × 10−13

(30)

These coefficients can be obtained by integrating the expansion of the integrand of the
representation

π

k(γ )
=

√
γ sinh(γ )

∫ π

0

sin(φ) dφ√
[1 − cos(φ)] sinh(γ ) + exp(−γ ) − exp(−γ cos φ)

. (31)

The expansion (29) can be used for precise evaluation of k(γ ) at γ < 1; each coefficient
in (30) is an order of magnitude smaller than the previous one.

At γ � 1, the quarter-period π/(2k) can be approximated with

π

2k(γ )
√

γ
≈ 1 +

N−1∑
n=1

Kn/γ
n + O(1/γ N); (32)

the coefficients

K1 ≈ 0.346 574, K2 ≈ 0.216 0, K3 ≈ 0.199, K4 ≈ 0.27, K5 ≈ 0.5, K6 ≈ 1.2 (33)

were estimated from the numerical analysis of the integral (31). The left-hand side of (32) was
evaluated using expression (31) at 10 < γ < 1000 and approximated with 1 − K1α at small
values of α = 1/γ . Then, the residual was divided by α and approximated as K2α, and so on.
The accumulation of errors at the sequential evaluations leads to the quick drop of the number
of significant figures; the last digit in coefficients (33) may be doubtful. The series seems to
be strongly divergent; the more terms are taken into account in the sum in (32), the narrower
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Figure 3. Evolution of x(z) neglecting the damping of pulsation: approximation x1 for
γ = 1, γ = 4 and γ = 9 (dashed) compared to the numerical solution (solid).

is range of validity of the resulting approximation. In particular, at N = 4, this representation
allows the precise evaluation of k(γ ) at γ > 100, giving at least 8 significant figures. Such
precision is important for the accurate estimates of behaviour of the amplitude and phase of
pulsation at very strong spiking, described in the following sections.

However, at γ = 100, the ratio Xmax/Xmin = e2γ ≈ 1087; this greatly exceeds the
physical range, at least for lasers. If we have only one photon in the gap between pulses,
and the energy of a photon is of order of one electron Volt, then, the energy, stored in the
cavity, should be of order of 1087 × 10−19 J = 1068 J. This would correspond to an explosion
of a heavy star rather than to an Earth-based laser. Values 0 < γ < 20 may have physical
meaning; the corresponding xmax < ln(2γ ) < 4. We may expect, at any realization of
the oscillator Toda as a self-pulsing laser, values of x do not exceed the upper grid-line in
figure 3. This is justification why we write the condition of small damping simply as u+v � 1,
without specifying x.

Aiming application to the laser science, it would be good to have an easy estimate, valid
at the intermediate values of logamplitude γ . In the whole range γ > 0, the normalized
frequency can be approximated with

kfit(γ )

=
(

10630 + 674γ + 695.2419γ 2 + 191.4489γ 3 + 16.862 21γ 4 + 4.082 607γ 5 + γ 6

10 630 + 674γ + 2467γ 2 + 303.2428γ 3 + 164.6842γ 4 + 36.6434γ 5 + 3.9596γ 6 + 0.8983γ 7 + 16
π4 γ 8

)1/4

(34)

with eight significant figures; |kfit(γ )/k(γ ) − 1| < 22 × 10−9 for all positive γ .
With the good approximation for the frequency of pulsation, the evolution of coordinate

x can be approximated with an appropriate periodic function. Let

β(γ ) =
√

γ

1 − e−2γ
, c(ϕ) = 1 − cos(ϕ), (35)

x0(γ, ϕ) = −δ − γ cos(ϕ), (36)

x1(γ, ϕ) = −δ + γ − 2 ln

(
cosh

(
β

k

√
2c(ϕ)

))
+ c(ϕ)

(
ln

(
cosh

2β

k

)
− γ

)
, (37)

x2(γ, ϕ) = 1

1 + γ 2
x0(γ, ϕ) +

γ 2

1 + γ 2
x1(γ, ϕ). (38)

The last argument ϕ of the functions xj has sense of phase of pulsation. Then, the evolution
can be approximated with x(z) = xj (γ, k(γ )z) for j = 0 or 1 or 2.
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The cosinusoidal approximation with x0 gives relative error smaller than 1% at γ � 1;
while the oscillation of x is almost harmonic. The approximation with x1 does well at x � 4;
this fit is compared to the numerical solution in figure 3, the deviation becomes visible at
γ ≈ 1. The combination x2 coincides with the numerical solution with three decimal digits
for all positive values of γ ; the deviation would not be seen at the same graphic. The error
of this approximation is small compared with the deviation from experimental data of the
low-damping pulsation in a microchip laser discussed below.

The approximations through elementary functions of normalized frequency k of pulsation
and x(z) can be used also for the case with small damping. However, the rate of decay of
logamplitude γ should be approximated.

5. Damping as perturbation

In the following, u and v by (15) are treated as small parameters; the relaxation term with
first derivative in (14) appears as a perturbation. This does not assume small amplitude of
pulsation, but the relative variation of the number of photons from pulse to pulse should not
be large. The necessary condition for the strong pulsation is u � 1, v � 1. Their product
also should be small: the definitions (15) give

uv = V/U � 1. (39)

In such a way, for the strong pulsation with low damping, the lifetime of photons in the cavity
should be small compared to the lifetime of excitations of the active medium.

At the low damping, the quasi-energy E and the logamplitude γ of pulsation reduce
slowly. Through γ , the extremal values of x also become slow functions of the normalized
coordinate z. The loss of quasi-energy during half a period π/k can be estimated as

E =
∫ zmax

zmin

dz(uex + v)

(
dx

dz

)2

, (40)

where zmin and zmax are neighbour values of normalized coordinate z, at which variable x (and
number of photons X) have minimal and maximal values:

x(zmin) = xmin, x(zmax) = xmax. (41)

For the first order approximation with respect to u and v, the derivative dx
dz

can be expressed
from (17). With x as new variable of integration, the loss per half-period can be considered as
a function of γ :

E(γ ) =
√

2
∫ γ−δ

−γ−δ

(uex + v)
√

E(γ ) − 	(x) dx, (42)

where δ and E are determined with (25) and (26).
The smoothed evolution of quasi-energy can be estimated with

dE

dz
= − E

π/k
. (43)

Considering γ as parameter which determines the quasi-energy, (43) gives the equation for
the logamplitude γ :

E′(γ )
dγ

dz
= −k(γ )

π
E(γ ), (44)

where E′ is derivative of function E by (26). Using (42), equation (44) can be rewritten as

dγ

dz
= − k(γ )

E′(γ )
(A(γ )u + B(γ )v), (45)
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where

A(γ ) =
√

2
∫ γ−δ

−γ−δ

ex
√

E(γ ) − 	(x) dx, (46)

B(γ ) =
√

2
∫ γ−δ

−γ−δ

√
E(γ ) − 	(x) dx. (47)

It is possible to show [3] that A(γ ) = B(γ ); in the first approximation, parameters u and v

give additive contribution to the damping, even at strong pulsation. These functions can be
approximated with series of γ :

A(γ ) = B(γ ) = πγ 2/2

1 − ∑∞
n=1 an(−γ 2)n

; (48)

the first coefficients of the expansion

a1 = 5
144 ≈ 3.472 222 222 222 222 × 10−2

a2 = 1
640 = 1.5625 × 10−3

a3 = 980 69
1 045 094 400 ≈ 9.383 745 621 448 168 × 10−5

a4 = 1 854 883
300 987 187 200 ≈ 6.162 664 322 210 723 × 10−6

a5 = 2 388 528 323
5562 243 219 456 000 ≈ 4.294 181 733 451 065 × 10−7

a6 = 4 926 525 386 647
156 187 789 602 324 480 000 ≈ 3.154 232 094 064 849 × 10−8

a7 = 218 666 888 547 727
89 964 166 810 938 900 480 000 ≈ 2.430 599 829 899 596 × 10−9

a8 = 44 570 765 432 050 679
228 389 031 477 370 222 018 560 000 ≈ 1.951 528 282 410 836 × 10−10

(49)

can be obtained in the similar way, as the expansion (29), (30). The expansion (48), (49)
allows the precise evaluation of A(γ ) at γ < 1.

In the opposite case of large γ , the expansion seems to have the form

A(γ ) ≈ 8γ 3/2

3

[
1 −

N−1∑
n=1

An/γ
n + O(γ −N)

]
; (50)

the first coefficients of the expansion

A1 ≈ 0.460 279, A2 ≈ 0.128, A3 ≈ 0.09 (51)

are estimated from the numerical analysis of expressions (46) and (47) at 10 < γ < 1000
in the similar way as coefficients K by (33). At γ > 100, this expansion is suitable for the
evaluation of function A. Such large values are out of the physical range, but they helped to
build up the approximations below.

For γ > 0, A(γ ) can be approximated by

Afit(γ )

= πγ 2

2

(
580 + 82γ + 33.8822γ 2 + 8.209 89γ 3 + γ 4

580 + 82γ + 114.4γ 2 + 19.6798γ 3 + 6.236 03γ 4 + 1.2099γ 5 + (3π/16)4γ 6

)1/4

(52)

with at least six significant figures, |Afit(γ )/A(γ ) − 1| < 10−6.
The equality A(γ ) = B(γ ) simplifies (45). Consider the new variable

ζ = z

u + v
= (t − t1)w

u + v
, (53)
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Figure 4. (a) Logamplitude γ (ζ ) by (54), solid curve; quasi-energy E(γ (ζ )) by (26), dashed;
exp(−ζ/2), thin curve. (b) Normalized phase F(ζ ) by (61), solid curve, and its estimates by (62),
dashed and by (64), dotted.

where t1 is time at which γ = 1. Then γ = γ (ζ ) satisfies the differential equation

γ ′(ζ ) = −A(γ (ζ ))k(γ (ζ ))

πE′(γ (ζ ))
, γ (0) = 1. (54)

The function γ (ζ ) is shown in figure 4 with thick solid line; it is a fixed function. For
comparison, exp(−ζ/2) and quasi-energy E(γ (ζ )) are shown in the same graphic.

For the evaluation of function γ (ζ ), it is more convenient to deal with the differential
equation for G = G(ζ) = ln γ (ζ );

G′ = −A(eG)k(eG)

πE′(eG) eG
, G(0) = 0. (55)

At ζ � 1, the function G can be approximated with

G(ζ) ≈ −ζ

2
−

N−1∑
n=0

Gn

(−ζ )n
+ O(ζ−N); (56)
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the first coefficients in this expansion are evaluated in the same manner as in the case of the
large γ expansion of the normalized frequency k:

G0 ≈ 0.016 352 42,

G1 ≈ 0.000 042 92,

G2 ≈ 0.000 5367,

G3 ≈ 0.002 08.

(57)

At N = 4, ζ > 11, such an expansion gives at least seven significant figures.
At large negative values of ζ , function G(ζ) can be approximated with

G(ζ) ≈ − 2
3ζ − g0 + o(−1/ζ ); g0 ≈ 0.374 636 01. (58)

The function o decays quickly; at ζ < −10, this estimate gives at least eight significant figures.
From estimates (56), (58) we may expect that the function G(ζ) = ln[γ (ζ )] decreases

almost linearly with time; although the tangent is little bit different for positive and negative
values of the argument. At strong spiking, the decrement is slightly stronger than at weak
pulsation; G(ζ) looks similar to the linear function, and γ (ζ ) behaves like an exponential
(figure 4).

It is interesting that logamplitude γ behaves as exponential function of ζ ; at negative
values of ζ , the amplitude Xmax/Xmin − 1 of pulsation behaves as a double-exponential
function of time. This behaviour explains why the direct numerical solution of the initial
system (1), (2) is so slow at the strong spiking: per each period, the conventional numerical
algorithm should trace the variable which varies by many orders of magnitude. The logarithm
of logamplitude, contrary, behaves very smoothly; it can be approximated with the modest
function

ln(γ (ζ )) ≈ Gfit(ζ ) =
√

(ζ + 2.149 7015)2 + 1 − 7ζ

12
− 0.195 494 22

− 17.8481 + 78.34ζ + 11.497ζ 2 + 0.272ζ 3 + 0.0265ζ 4

[(ζ + 2.6)2 + 39.6][(ζ + 2.025)2 + 2.75]
√

(ζ − 18)2 + 375
(59)

with four significant figures; |Gfit(ζ ) − G(ζ)| < 1.4 × 10−4. Most of the dependence is
provided by the first term in the right-hand side of (59); the last fraction gives the relatively
small correction, which ranges between zero and unity.

The equivalence of parameters u and v in the damping allows us to describe the evolution of
logamplitude with fixed function of one argument; γ (ζ ) does not depend on any parameters.
This gives the description of damping of pulsation. As verification, in figure 5(a), the
evolution of E(γ (ζ )), by (26), (54), is compared to two numerical solutions of (14), for
(u = 0.05, v = 0) and for (u = 0.05, v = 0); the exp(Gfit(ζ )) instead of γ (ζ ) was used
to plot the graphic. Good agreement takes place. However, the estimate does not take into
account that the quasi-energy dissipates mainly in vicinity of maxima of x, where its derivative
is high. Therefore this approximation does not reproduce the stair-like jumps of quasi-energy
E in the left-hand side of the graphic.

The parameter ζ by (53) determines the logamplitude γ of pulsation, γ = γ (ζ ). At
ζ > 0, γ (ζ ) ≈ exp(−ζ/2), reproducing the exponential decay of the weak pulsation. At
ζ < 0 (strong pulsation), the logamplitude decays a little bit faster, γ (ζ ) ∼ exp

(− 2
3ζ

)
.
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Figure 5. (a) Quasi-energy versus normalized time z − z1 = (t − t1)ω for the case u + v = 0.05
as E(γ ((z − z1)/(u + v))), thin curve; quasi-energy evaluated by (17) from the numerical solution
of (14) for {u = 0.05, v = 0}, (dots), and for {u = 0, v = 0.05}, (circles). (b) Normalized output
power in the same cases.

6. Phase of pulsation

The perturbation analysis, used in the previous section for the evolution of the logamplitude
γ , can be extended to take into account the phase of pulsation. The phase at the normalized
time z can be estimated integrating the normalized frequency k of pulsation:

ϕ =
∫ z

z1

k(γ ((u + v)z2)) dz2 = F((u + v)(z − z1))

u + v
, (60)

where z1 is the normalized time, when γ = 1, and

F(ζ ) =
∫ ζ

0
dτ k(γ (τ )). (61)
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At large negative ζ , the expansion may have the form

F(ζ ) ≈ −f0 + f1 exp(ζ/3) − f2 exp(ζ ) + O(exp(2ζ )), (62)

where

f0 ≈ 4.522 454 51, f1 ≈ 5.683 174, f2 ≈ 1.353. (63)

At large positive ζ , function F can be approximated with

F(ζ ) ≈ −F0 + ζ + F1 exp(−ζ ) + O(
exp

(− 4
3ζ

))
, (64)

where

F0 ≈ 0.039 329 2835, F1 ≈ 0.039. (65)

Above, we type ‘may have form’ instead of ‘has form’, because we do not yet have the formal
mathematical proof; so, such expansions can be considered as our guess. The first coefficients
in the expansions (62) and (64) are estimated from the numerical evaluation of (61) for large
(non-physical) values of |ζ | � 1, in the same way as in the case of functions k and A in the
previous sections.

In the whole range, function F can be approximated with

Ffit(ζ ) = −2.280 8919 + (t +
√

(t + 4.483 125 23)2 + 14.67)/2

− 53856.7 + 16 038.6ζ + 2185.54ζ 2 + 134.79ζ 3 + 3.6687ζ 4

[(ζ + 12.78)2 + 81.611][(ζ + 6.585)2 + 36.7524]
√

(ζ + 2.56)2 + 10.36
;

(66)

|Ffit(ζ ) − F(ζ )| < 1.5 × 10−4.
The estimates (62) and (64) are compared to the function F(ζ ) by (61) in figure 4(b).

(The graphical resolution does not allow us to see the difference between function F and its fit
Ffit by (66).) These estimates reveal the basic properties of the normalized phase F(γ ). From
(64) it follows that F(−∞) = −f0 ≈ −4.5. Then the phase increases, the graphic passes
through the origin of coordinates, F(0) = 0; it follows from (61). At small γ � 1, the phase
increases linearly, which corresponds to the linear oscillator with frequency not dependent on
the amplitude [1, 2].

The minimal value of the normalized phase −f0 ≈ −4.522 454 51 indicates that the
maximal number of strong peaks is determined by the sum u + v. Even at high initial
amplitude of pulsation, within

Nmax = f0

2π(u + v)
(67)

pulses, the logamplitude of pulsation becomes smaller than unity. In particular, for the case
u + v = 0.05 shown in the figure 5, there may exist no more than 14 pulses with logamplitude
larger than unity; 11 of them are within the plot range.

The approximation (62) allows us to estimate the maximal number of strong spikes. At
weak damping (u + v � 1), independently on the initial conditions, the number of strong
pulses does not exceed Nmax by (67).

7. Approximation of the output power

The knowledge of behaviour of logamplitude γ = γ (ζ ) and phase ϕ = F(ζ )/(u + v) allows
us to approximate the number of photons X and the output power (7) with simple functions.
Generalizing the approximations xj by (36)–(38), consider

x̃j (z) = xj

(
γ (ζ ),

F (ζ )

u + v
+ ψ

)
, ζ = (u + v)(z − z1), (68)
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where ψ is phase of pulsation at the moment t1 = z1/w, when the logamplitude γ = 1.
The fit (68) approximates x as a function of K,W,U, V through u and v; this fit can be
interpreted as an approximation of a function of five parameters (t − t1, ψ,K,U, V ), valid for
u + v � 1. The number of photons in the cavity can be estimated as X̃2(t) = Xo exp(x̃2(wt)).
At ψ = 0, u + v = 0.05, this approximation is plotted in figure 5(b) with thin curve; the
approximations exp(Gfit(ζ )) and Ffit(ζ ) were used instead of γ (ζ ) and F(ζ ). For comparison,
in the same figure, the numerical solutions of (14) are shown for the cases u = 0.05, v = 0
(dots) and u = 0, v = 0.05 (circles). Both numerical curves are close to the approximation
with (68). The small difference is seen at the left-hand side of figure 5, when the oscillator
loses most of its energy during a small fraction of quasi-period.

The left-hand side of figure 5 is at the edge of the physical range of values of the
dimension-less time z. At z = −100, we have ζ = −100(u + v) = −5 and G(−5) ≈ 3;
γ (−5) ≈ e3 ≈ 20 means that the peak number of photons Xmax ≈ e40Xmin ≈ 3 × 1017Xmin.
This should correspond to enormous energy, stored in the photons inside the cavity; therefore
we expect, our approximation works for all realizations of the oscillator Toda as a self-pulsing
laser, while u + v < 0.05.

In our approximation, the decay of the pulsation is determined by the sum u + v and is
not sensitive to the difference u − v. The two functions (logamplitude and phase) of variable
ζ = wt/(u + v) describe the decay of pulsation. The sum u + v determines also the maximal
number Nmax of strong spikes by (67). The logarithm of the logamplitude is approximated
with Gfit by (59) and the phase is approximated with Ffit by (66). Then, the number of photons
X (and therefore, the output power) can be approximated with (68). This approximation is
valid at u + v < 0.05.

8. Discrete photons and the physical interpretation

Initial classical equations (1) do not take into account the discrete character of photons.
Physically, the self-pulsation begins with photons of the spontaneous emission; the classical
equations become valid as soon as these photons get amplified. This section analyses the
limit on the amplitude of pulsation which arises from the discrete character of photons, and
suggests the scenario of development of self-pulsation.

Assume that the pulsation begins when the medium is pumped just to reach the threshold
of the laser action. This position can be interpreted as minimum of the output power. Assume,
there is of order of one photon in the cavity, Xmin = 1; this is approximation of the quantum
process in classical terms. The initial value of x is expressed with logarithm of X; therefore, it
will not affect much the evolution, if we take several photons in the initial condition. Then, at
the maximal logamplitude of pulsation, γ + δ = ln Xo, and (25) gives

2γ = ln(Xo) + ln(2γ ) + O(exp(−2γ )). (69)

The maximal value of logamplitude

γmax ≈ 1
2 ln(Xo) + 1

2 ln(ln(Xo)) = 1
2 ln(Xo ln(Xo)). (70)

The maximal number of photons can be estimated as

XMAX = Xo exp(γmax − δmax) ≈ 2γXo ≈ Xo[ln(Xo) + ln(ln(Xo))] ≈ Xo ln(Xo). (71)

The above estimates lead to the simplified scenario of development of self-pulsation.
As the pump is switched on, there are almost no photons in the cavity, until the number of
excitation of medium reaches its steady-state value Yo; this is threshold of the laser action. If
we neglect the depletion of excitation due to the spontaneous emission, then this process takes
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time t0 = Yo/W . Then the photons of spontaneous emission get amplified, and their number
can be interpreted as a continuous commutative variable.

The initial value of the normalized dimension-less time ζ can be estimated from the
asymptotic expansion (58); this gives the estimate

−ζo ≈ 3
2 [g0 + ln(γmax)] ≈ 3

2

[
g0 + 1

2 ln(Xo ln(Xo))
]
. (72)

The logamplitude of self-pulsation decays almost exponentially, the laser produces of order
of Nmax strong pulses during time

t1 = −ζ0

(u + v)w
. (73)

Then logamplitude becomes of order of unity and smaller; the rate of decay reduces from
2
3 (u + v)w to 1

2 (u + v)w, and the pulsation becomes decaying sinusoidal, and the analytical
description by [1, 2] becomes valid; after several times (u + v)−1/w, the pulsation disappears
at the background of the statistical noise. During the quasi-periodic pulsation, the output
power can be approximated with fit x2 by (38), (68).

9. Comparison with experiments

This section describes our attempt to realize the oscillator Toda at the optical bench. Although
experimental measurements of various self-pulsing lasers have been frequently reported, not
so many authors compare the measured and calculated pulse traces [19, 20, 23, 24]. In
figure 6, we compare our original oscillograms to the model considered above.

Our laser is a 1 mm thick, 10% at ytterbium-doped, Y3Al5O12 ceramic disc obtained from
Konoshima Chemical Corp [33]. A multilayer coating, anti-reflective at the pump wavelength
λp = 940 nm, and highly reflective for the signal wavelengths λs = 1030 nm, is deposited
on one face. The output coupler consists of a multilayer coating with θ = 10% transmission
factor at the signal wavelength. Laser operation of the device was performed by axial pumping
through the rear mirror with a semiconductor laser diode (LIMO Corp.), delivering up to
26 W at λp = 940 nm. The pump was delivered with a 1 m long, 200 µm diameter fibre with
a numerical aperture NA = 0.22. A pair of aspherical lenses with focal length f = 8 mm
and NA = 0.5 was used to concentrate the pump light on the microchip with a transmission
efficiency of 96%. The spot size was measured by the knife-edge method and found to contain
90% of the total power in a circle of radius about 80 µm. The pump absorption efficiency
was measured to be around 75%. The output power as a function of time measured with the
optical detector EG&G:G8194-32 and the Tektronix TDS 3052B oscilloscope. We calibrated
the detector with ‘LaserMate’ powermeter from Coherent.

Pulsed pumping was used to access the transient regime of this laser. Input pump power
was reduced to 0.5 W in order to mitigate the thermal effects; this corresponds to absorbed
power Pp = 375 mW. The pulse duration was 2 ms, with a 10 µs rising front. We assume
the following values of parameters: σ = 2 × 10−20 cm2, τ = 0.97 ms, n = 1.8. Using
definitions (3)–(6), we evaluate K = 5.3 × 10−6 Hz, U = 5.3 × 109 Hz, V = 1030 Hz, W =
1.77×1015 Hz. With equations (8)–(6), we estimate Xo = 1.4×108, Yo = 1015, � = 1775 Hz
and w = √

KW − UV = 2×106 Hz ≈ �. Note that � � �; this means negligible damping:
u � 1, v � 1.

We plot two examples of the oscillograms in figure 6. The period of small pulsation is
expected to be To = 2π/� = 3.16 × 10−6 s, which is slightly larger than the quasi-period
of pulsation at the right hand side of figure 6. The strong spiking is seen at the left-hand side
of figure. The maximum number of photons Xmax is about five times larger than the average
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Figure 6. Output power versus time since the first maximum: two experimental realizations of the
self-pulsation (thin curves) and the approximation using equation (7) (dashed curve).

value Xo, i.e. Xmax/Xo ≈ 5. From equation (70), we estimate the initial value of logamplitude
γ ≈ 2.5. Using equation (27), we estimate the period T ≈ 2.6 µs. Both the period and the
pulse width are qualitatively reproduced by our theoretical model.

We also compared the absolute output power to the predictions of our model. In the
transient regime, the average output power is about one third of that predicted by (7). Therefore,
we scale down the theoretical estimate with factor 1/3; this scaled estimate is shown in
figure 6 with dashed curve. This scaling means that our model overestimates the output power
at the transient regime.

We cannot predict well the moment of the beginning of pulsation, this moment fluctuates
from the estimate T1 = Yo

W
= U

KW
of time necessary to deliver the active medium the steady-

state number Yo of excitations. Therefore, we displace the time scale for the two realizations
to show them at the same graphic in figure 6.

The relaxation to the steady state is faster than what our model predicts; at u + v ≈ 10−4,
no significant decay would be seen in figure 6. The oscillograms look like a beat of pulsation
of several competing modes [23, 24].

The necessity to scale the ordinate axis in figure 6 and to displace the abscissas axis and
the visible decay of the pulsations means that we do not fully reproduce the equations (1) at
the optical bench; as [19], we got only qualitative agreement. Various effects may affect the
system: the re-absorption at the signal wavelength [19, 16], the modal structure of the signal
[23, 24], non-uniform distribution of pump and signal, the thermal lensing and the spatial hole
burning [34, 35]. A laser, which follows the scenario for the oscillator Toda, is still left to be
achieved.

10. Conclusions

The simple model of self-pulsation in lasers is based on equations (1), (2). The model includes
four parameters K,U , V,W , which determine the rate of conversion of energy of excitation
of the active medium to the lasing photons, rate of escape of photons from the cavity, rate
of relaxation of the active medium and rate of its pumping. In such a system, the pulsation
with frequency scale w = √

KW − UV may take place. This model is equivalent to the
oscillator Toda [3] with dimensionless damping parameters u = w/U and v = V/w (14).
The spiking is possible at low damping, 0 < u � 1 and 0 < v � 1; then, the damping
term can be considered as perturbation. The loss of quasi-energy during the half-period of
pulsation determines the decay. The state of the equivalent oscillator is characterized by the
logamplitude γ and phase ϕ, which are approximated through elementary functions (59) and
(66) of normalized dimensionless time parameter ζ = (u + v)(t − t1)w.

The approximation (66) indicates the maximal number of strong spikes. Even at high
initial amplitude of pulsation, within Nmax ≈ 0.72/(u+v) spikes, the logamplitude of pulsation
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becomes smaller than unity. At strong pulsation, the logamplitude γ decays with decrement
2
3 (u + v)w. Then, the decrement becomes 1

2 (u + v)w, self-pulsation becomes linear and can
be described with the linearized equations [1, 2]. The discrete (quantum) character of photons
limits the range of validity of the model for very strong pulsation; the maximal value of
logamplitude γmax ≈ 1

2 ln(Xo ln(Xo)). The peak number Xmax of photons in the cavity does
not exceed value XMAX ≈ Xo ln(Xo). The first spike comes with delay of order of

√
γmax/w

after reaching the threshold of the laser action.
The precision of the estimates above for equations (1), (2) exceeds the precision of the

realizations of oscillator Toda as a pulsed laser. An accurate experimental realization of the
oscillator Toda (14) remains a challenging task. Also, the model can be updated to describe
better the typical experimental conditions. The consideration of logarithms of the numbers
of photons in various modes might give the simple description of the competition between
longitudinal modes [23, 24]. The role of spatial distribution of pump in the active medium,
and the gradual pumping up of the lateral region of the sample, and thermal drift of the size
of the signal mode in the transient regime could be considered in the similar way, treating the
initial parameters in equation (1) as slow functions of time. In such a way, the approximations
(34), (52) could also be a tool for more complicated models.
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